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the correspondence my ~ m,, namely c~ +-+ y. Hence, 
Cy appears in the first line (under m,), and the magnetic 
group according to which Cy (C,) transforms is (Table 4) 
enma (m~mt~mv). 
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Properties of Crystal Lattices: The Derivative Lattices and their Determination 
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Derivative lattices are classified as super, sub and composite, on the basis of the properties of the trans- 
formation matrices relating them to the lattice from which they are derived. A method for obtaining 
the transformation matrices generating these lattices is given. The method has been applied to the deriv- 
ation of the unique super and sublattices in a few important cases. 

The super and sublattices associated with the lattice of 
a crystal are not infrequently related to important 
properties of the crystal. For example, in the case of 
twinning by reticular merohedry, twinning takes place 
only if a superlattice possesses symmetry (or pseudo- 
symmetry) higher than that of the crystal lattice 
(Friedel, 1964; Donnay, Donnay & Kullerud, 1958). 
The concepts of super and sublattices are also essential 
in the study of some derivative structures (Buerger, 
1946, 1954). In an order--disorder transformation, for 
example, the ordered phase is characterized by a cell 
larger than that of the disordered phase and, similarly, 
the cell on which a magnetic structure is based is often 
larger than that of the corresponding chemical struc- 
ture. So far, no attempt has been made to determine 
systematically the number and the geometrical proper- 
ties of super and sublattices associated with a given 
lattice, and the treatment of this subject has been 
generally restricted to specific cases of interest. In this 
paper, we define derivative lattices and then outline a 
method for their derivation. 

Let us consider any given lattice and let us describe 
it in terms of any arbitrary primitive triplet of non- 
coplanar translations at (a triplet is called primitive 
when it defines a primitive cell: International Tables for 
X-ray Crystallography, 1969, p. 8). Let us now perform 
the axial transformation 

b~=~:S~jaj ( i , j= 1,2,3) (1) 

and let us assume that the determinant ISI of the trans- 
formation matrix S is different from zero. The three 
noncoplanar translations bi can be regarded as the 

edges of a primitive cell defining a new lattice related 
to the one based on the translations at by transforma- 
tion (1). We may call original lattice the lattice based 
on the triplet of translations at and derivative lattice 
the lattice defined by the triplet of translations b~, 
provided that this triplet is considered primitive. 
Original and derivative lattices are in general different, 
i.e. they have different reduced cells (Niggli, 1928; 
International Tables for X-ray Crystallography, 1969, 
p. 530). However, if the elements S~j are integers, and 
if the determinant ISl is equal to unity, the two lattices 
are identical. 

The derivative lattices of interest in crystallography 
are those that are obtained when the elements S~j in 
transformation (1) are simple rational numbers. These 
lattices can be defined in terms of the properties of the 
transformation matrix S as follows. 

Definition 1. A derivative lattice is a superlattice,* if 
the elements Sij of matrix S are integers, and if the 
determinant ISI is greater than one. Thus, all the nodes 
of the superlattice are nodes of the original lattice, but 
not all nodes of the original lattice are nodes of the 
superlattice. 

Definition 2. Let T be the inverse of matrix S, i.e. 
T = S  -1. A derivative lattice is a sublattice, if the ele- 
ments Tt: of matrix T are integers, and if the deter- 
minant ITI is greater than one. Thus all the nodes of 

* In some publications, especially in the mathematical 
literature (e.g. Cassels, 1959), a 'superlattice' as defined in this 
paper is called a sublattice because it is generated by a subgroup 
of the translations on which the original lattice is based. 
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the original lattice are also nodes of the sublattice, but 
not all the nodes of the sublattice are nodes of the ori- 
ginal lattice. 

Definition 3. A derivative lattice is a composite 
lattice, if one or more of the elements S~ i of matrix S, 
and one or more of the elements T~j of matrix T are 
fractional. A composite lattice, therefore, is neither a 
superlattice, nor a sublattice, although it partakes of 
the two. 

Matrix S in expression (1) transforms a given cell of 
the original lattice into a given cell of the derivative 
lattice. The same derivative lattice can be described in 
terms of an infinite number of primitive cells, and it 
can be obtained from an infinite number of primitive 
cells of the original lattice. In other words the lattice 
generated by a matrix S can also be generated by any 
one of the matrices S' given by the equation: 

S ' = H S K ,  (2) 

where the elements H~j and K~j of matrices H and K are 
integers, and the determinants [H[ and [K] are equal to 
one. [In equation (2), matrix K relates, in the original 
lattice, the two cells transformed by matrices S and S', 
and matrix H relates, in the derivative lattice, the two 
cells produced by these transformations.] Matrices S 
and S' not related by equation (2) generate different 
derivative lattices, either of different type (e.g. a super- 
lattice and a sublattice), or of the same type with 
ISl¢lS'l or with ISl=lS'l. These matrices are easily 
recognizable because matrix S'(SK) -1 has nonintegral 
elements and/or a determinant different from one. 

The determination of super, sub and composite 
lattices requires finding the unique matrices S that 
generate these lattices for any given value of the 
determinant of the transformation. 

We will consider first the derivation of superlattices. 
The transformation of coordinates corresponding to 
transformation (1) is (International Tables for X-ray 
Crystallography, 1969, p. 15): 

I~=Ta (3) 
where T is the transpose of T, and ]l and a are the 
column vectors formed by the coordinates fl~ and cq of a 
point referred to the reference systems b~ and at 
respectively. The nodes of the superlattice have integral 
coordinates. (Points with fractional fl~ are not nodes of 
the superlattice, although they may be nodes of the 
original lattice. This is a consequence of assuming that 
the translations b~ define a primitive cell.) Indicating 
with S the adjoint of S ( S =  ISIT), we have from (3): 

ISIll = S a .  (4) 
Equation (4) shows that the coordinates ~ of points 
that are nodes of a superlattice must be such that 
~ j ~ j ~ j  are integral multiples of the determinant ISl of 
the transformation that generates the superlattice. 
Conditions (4), therefore, limit the possible values 
which the ~ can assume in much the same way as the 
conditions on h, k, 1 limit the possible reflexions in the 

determination of lattice types from diffraction patterns. 
However, the conditions defining all the unique super- 
lattices consistent with a given value of IS] cannot easily 
be found by using expression (4). This can be under- 
stood by remembering that a derivative lattice can be 
generated by any of the matrices given by equation (2). 
Therefore, the values that the elements Sj~ can assume 
in (4) are infinite in number. To circumvent this prob- 
lem, we have to find a uniquely defined matrix to be 
taken as a representative of the entire class of matrices 
related by equation (2). 

One way to accomplish this result is by introducing a 
matrix L, defined by the expression 

L - - S - l a I N ,  (5) 

in which N is a matrix with integral elements chosen so 
that the elements Lgj obey the following condition: 

2 - I S [  < L~j < lSl 
2 -2--for [Sl even, 

L-s_ ISl_ < L,j < ! S ! - 1  for ISl odd. 
2 - - 2 

(6) 

Equation (4) can be written: 

ISIP, = ~,~j,c9 = ZjZj,c9 + ISl ~ j N j 5 ~ ,  (7) 

and from this we obtain: 

~ j t j , ~ j =  ISI ( P , -  ~jgj,~.j) =n~lSl, (8) 

where the coefficients n~ are integers. Conditions (8), 
like conditions (3), define a superlattice by eliminating 
some of the nodes of the original lattice. More precise- 
ly, points whose coordinates cq satisfy (8) are nodes of 
a superlattice as well as nodes of the original lattice, 
while points with integral coordinates ch that do not 
satisfy (8) are nodes of the original lattice but not of 
the superlattice. It can be shown that if in (2) we impose 
the condition K =I ,  where I is the identity matrix, the 
matrices generating the same superlattice, and only 
these matrices, produce the same set of conditions (8). 
Therefore, the problem of deriving the unique super- 
lattices for any given value of IS[ consists in finding all 
the unique matrices t consistent with that value of ISl, 
provided that the transformations generating the super- 
lattices are applied to the same cell of the original 
lattice (K=I) .  

The main limitation on the number of matrices L 
consistent with a given ISl is imposed by the fact that 
the possible values of the elements L~ are limited by 
conditions (6). For example, for lSl =2, the elements 
L~j can be zero or one; for ISl =3, they can be - 1 ,  0, 
or 1, etc. The possible values of the elements L~j for a 
given value of IS] are first grouped in sets of three to 
form the rows (LI~, L2~, L3~) of matrix L. Note that the 
order in which this grouping is done is relevant. For 
example, the rows (0, 0,1) and (0,1,0) are different, as 
they correspond to the conditions c~3=nlSI and C~z= 
mlSI respectively. On the other hand, not all the pos- 
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sible rows are unique. For  example, the rows ( -LI~ ,  
- L 2 ,  -L3 i )  and (LI~, L2,  L3t) are equivalent, i.e. 
they imply the same condition L ~  + L2~2 +L3i~x3 = 
nlS[ and therefore one of them has to be rejected to 
avoid duplication. Similarly, for ISI even, the rows 
[-Zx~, -L2,,  (181/2)] and [L~, L2i, (151/2)] are equi- 
valent, and other types of equivalence can easily be 
discovered case by case. The order in which the rows 
are combined to form the matrices L is irrelevant; 
matrices 001/000/000 and 000/001/000 both imply 
~3=nlSl,  so that only one matrix needs to be con- 
sidered. Furthermore,  not all the matrices L are uni- 
que. For  example, matrix 001/001/000 implies ~3 = n lSI 
as does matr ix  001/000/000; one of them can therefore 
be eliminated. Finally, some of the matrices L are in- 
consistent with the value of ISI under  consideration 
and have to be ignored. Matrix 001/010/000, for ex- 
ample, implies c~3=nlSl and cq=mlSl simultaneously 
and, as a consequence, defines a superlattice of  deter- 
minant  (ISl) z. Such a matrix must  be rejected if  the 
superlattices being determined are characterized by 
determinant  IS[. After this systematic process of elim- 
inat ion has been accomplished, the remaining matrices 
L define, through conditions (8), all the unique super- 
lattices consistent with a given value of  [S[. The 
matrices S, corresponding to the matrices L, can be 
obtained from the equation 

g = L + I S I N  (9) 
and 

S = l S l ( g ) - ' .  (10) 

The elements N~j of matrix N in (9) must be chosen so 
that  IS[=(IS[) z, but  they are otherwise arbitrary. In 
fact, it can be shown that a superlattice is completely 
defined by matrix L and that matr ix  N merely defines 
the cell describing the superlattice. The unique ma- 
trices S, and the corresponding conditions (8) on the 
a~, are presented in Table 1 for IS[ =2 ,3 ,4 .  

Matrices that  satisfy definition (2) for sublattices can 
be obtained by calculating the inverses of the matrices 
given in Table 1. In this way, however, one does not  
obtain all the unique sublattices associated with the 
original lattice. For  example, the t ransformations 
(200/010/001) and (200/l l0/001) define two different 
superlattices when applied to the same original cell, 
but the inverse matrices (½00/010/001) and (½00/ 
-½10/001), define two different cells of  the same sub- 
lattice. 

The matrices generating the unique sublattices can 
be derived with the help of the reciprocal lattice. The 
original cell, based on the primitive translations a~, 
has a reciprocal cell based on the primitive translations 
a~'. In reciprocal space, we may form the unique super- 
lattices by means of the t ransformation:  

b~" = ~ jS , j a j '  , (11) 

where the matrices S are those previously obtained. 
The reciprocal of  a lmique superlattice defined by the 
translations b~' is a unique sublattice defined by the 

Table 1. Unique matrices S generating superlattices 
for 1S1=2,3,4 

The unique matrices generating sublattices for ISI =½,3,¼ are 
obtained by taking the transpose of the inverse of the matrices 
given. For each value of ISI, the matrices can be applied to 
any primitive cell of the original lattice, but they must be 

applied to the same cell. 

Transformation matrix S 

200/010/001 
100/020/001 
100/010/002 
200/110/001 
200/010/101 
100/011/002 
110/011/101 

300/010/001 
100/030/001 
100/010/003 
1T0/210/001 
110/210/001 
lOl/2Ol/OlO 
101/20i/010 
01i/o21/lOO 
011/021/100 
211/110/021 
121/i10/201 
112/101/210 
111/120/021 

400/010/001 
100/040/001 
100/010/004 
400/310/001 
400/110/001 
400/010/301 
400/010/101 
100/013/004 
100/011/004 
400/210/001 
400/010/201 
100/021/002 
200/120/001 
200/010/102 
100/012/004 
220/011/101 
110/011/202 
110/022/101 
121/112/211 
310/111/201 
400/110/201 
210/111/301 
400/210/101 
111/013/102 
200/011/102 
210/011/201 
120/021/101 
110/012/102 
200/020/001 
200/010/002 
100/020/002 
200/011/002 
200/020/101 
200/110/002 
200/111/002 

Conditions limiting the possible 
coordinates 5~ of the superlattice 
nodes 

ISI =2 
0C1 = 2 n  

52  = 2n 
0C 3 = 2n 
51 + 5 2 = 2 n  

~i + ~3 = 2n 
~2 + 53 = 2n 
~1 +52+53=2n 

ISI =3 

ISl =4 

51=3n 
(X 2 = 3n 
53=3n 
51 + 52  = 3 n  

~1--~2=3n 
51 + ~ 3  = 3n 
0C 1 - -  53  = 3/'/ 

5 2 + 5 3 = 3 n  

52  - -  53  = 31l 

- - 5 1 + 5 2 + 5 3 = 3 n  

51 - -  oc 2 + 5 3  = 3n 
~ i  + 5 2  - -  53  ~- 3 n  

cq + ~2+ ~3 = 3n 

0C 1 = 4n 
0~ 2 = 4n 
53  = 4n 
(Xl + 5 2  -= 4 n  

0c1 - -  0c2 = 4 t l  

51 + 53 =4n 
51 - -  53  = 4n 
52 + 53 = 4n 
0C 2 - -  0C 3 = 4n 
51 +252=4n 
51 + 253 = 4n 
52 + 253 = 4n 
251 + 52 = 4n 
251 + 53 = 4n 
252 + 53 = 4n 
51 + 5 2 - -  0 c 3 = 4 n  

51 - -  5 2  + 53  ----- 4 n  

51 + ~2 + c~3 = 4n 
51 +52+53=4n 
51 + 52 + 253 = 4n 
51 - -  5 2  + 2 5 3  = 4n 
51  + 2 5 2  + 5 3  = 4 n  

51 + 252 -- 53 = 4n 
251 + 52 + 53 = 4n 
251 + 52 - -  5 3  = 4n 
51 + 252 + 253 = 4n 
2oq + 52 + 253 = 4n 
251 + 2o~2 + 53 = 4n 
5 1 = 2 n ;  5 2 = 2 m  

~l=2n; 53=2m 
52=2n; 53=2m 
oq =2n; 52+ oc3=2m 
52=2n; 51 +53=2m 
53=2n; 51 +~2=2m 
51 + 52=2n; ~2+53=2m 
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translations b~ and given by: 

b ,= ~ jT j ia j .  (12) 

Transformation (12) shows that, if S is a matrix that 
transforms the original lattice into a superlattice with 
determinant [SI, then the transpose of matrix T is the 
matrix that transforms the original lattice into a sub- 
lattice with determinant 1/[SI. Matrices for obtaining 
sublattices with determinants 1 1 ~-, ½, 4 can be obtained by 
taking the transpose of the inverse of the matrices 
reported in Table 1. As in the case of superlattices, 
each set of matrices generating sublattices must be 
applied to the same primitive cell of the original 
lattice, but the choice of this cell is arbitrary. 

The transformation matrices needed for obtaining 
composite lattices from the original lattice can be 
found by multiplying, in any order and in any com- 
bination, matrices generating superlattices with ma- 
trices generating sublattices. Two simple examples of 
such matrices are 

(100/020/001). (½00/010/001)--(½00/020/001) ISI = 1 
and 
(100/0¼0/001). (200/010/001)=(200/0¼0/001) ISl=½. 

In the first example, the composite lattice is obtained 
by halving the at axis of the original cell and by 

doubling the a2 axis, and the determinant of the trans- 
formation is equal to one. In the second transforma- 
tion, the at axis is doubled and the az axis is reduced to 
¼ of the original length. The number of composite 
lattices that can be produced for any given value of the 
determinant of the transformation is unlimited. For 
example, composite lattices with ISI = 1 can be obtained 
in a great variety of ways, such as by combining trans- 
formations with determinants 3 and ½, or 2 and J2-, or 3, 
½, 2 and ½, etc. So far we have made no attempt to 
classify these lattices or to determine their properties. 
Work on this subject, however, is planned. 
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The Resolution Function of a Slow Neutron Rotating-Crystal Time-of-Flight Spectrometer. 
II. Application to the Measurement of General Frequency Spectra 
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The resolution function of a slow neutron rotating-crystal time-of-flight spectrometer applied to the 
measurement of general frequency spectra is treated analytically. It is demonstrated that every com- 
ponent of the instrument may contribute to the uncertainty of the time-of-flight measurement. Focusing 
conditions are derived, leading to the concept of removable and irremovable time-of-flight spreads. 
Experimental evidence is presented to support the resolution functions, calculated on the basis of this 
theory. 

1. Introduction 

In all neutron-scattering experiments, the observed 
spectra, I(Q, co), are given by the convolution integral 

I(Q, c o ) = I I R ( Q ' - Q ,  co'-co)cr(Q',co')dQ'dco', (1.1) 

where R(Q, co) is the instrumental resolution function 
and a(Q, co) is the unknown scattering cross section. 

Q and co are defined by the momentum transfer: 

hQ =h(k~2-k2a), (1.2) 

and by the energy transfer: 

h z 
hco= 2m- (k~z-kz23) ' (1.3) 

in which m denotes the neutron mass. The indices 
0,1,2,3 refer to the different spectrometer elements, 


